LangChain "Chains vs Agents" Webinar

Weblink: https://www.crowdcast.io/c/m2ooh0uy9syg

Speak1: Swyx - smol developer

https://docs.google.com/presentation/d/1d5N3YqjSJwhioFT-edmyjxGsPBCMb1uZg0Zs5Ju673k/edit#slide=id.g254e571859c_0_133

image-20230629013808733

image-20230629013651102

Article:

Speaker2: Alex - Agent Eval

https://docs.google.com/presentation/d/1bo5uxaS4JMNt99VmsRdeTFLo9qSIByJiViIVakzF9NQ/edit#slide=id.g22b104eecb9_0_2

image-20230629004649563

  • 很難 debug agent failure:
    • failure token
    • CAPCHA

image-20230629005101725

  • 三種 Evaluation 方式

image-20230629005208061

  • 抓下一堆 dataset

image-20230629005331276

image-20230629010716866

Q&A

  1. What is the most affordable (free, local?) LLM for specific Agent Executor / Agent task like decision making, tool selection…?
    • Mpt7b
  2. In my experience, the OpenAI functions work really well in deciding what tool(s) to use even in multi-step scenarios. Do you think that a train-of-thought process is used behind the scenes, like ReACT or MLKR? And how useful are they now?
    1. 可以考慮看看 few shot

其他

Agent Hackathon

image-20230629011637608

https://lablab.ai/event/ai-agents-hackathon

AgentEval (第一名)

最後有 OpenAI CEO 演講


Buy Me A Coffee

Evan

Attitude is everything